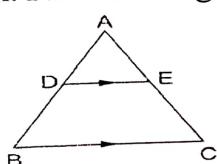


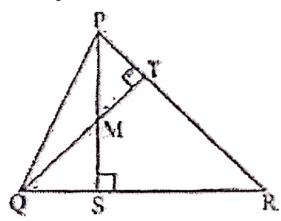
One mark 15 min

TRIANGLE PYQ

1. E and F are points on the sides PQ and PR respectively of a triangle PQR and $EF \parallel QR$. If $PE = 2.5$ cm, $PQ = 6$ cm and $PF = 4.5$ cm, find the lengths of RF and PR.


2. In the given figure, if in triangle ABC, $DE \parallel BC$, then which equalities are hold ?

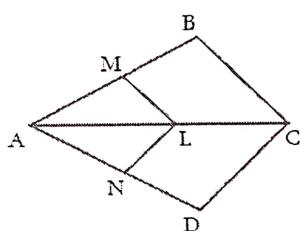
errors - eraser


3. Which of the following is not the criterion for similarity of two triangles ?
(A) SAS (B) SSS (C) AAA (D) RHS

4. In the given figure, ABC is a triangle in which $DE \parallel BC$, $AD = 3$ cm, $BD = 4$ cm and $AC = 14$ cm. Find the length of AE.

errors - eraser

5. In the given figure, PQR is a triangle in which PS and QT are altitudes from P and Q respectively, intersecting each other at M. Prove that triangle $\triangle QSM \sim \triangle PTM$.



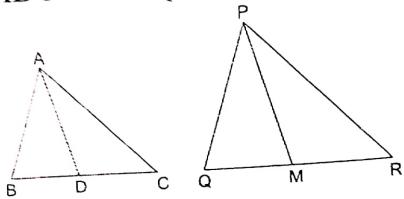
errors - eraser

6. If a line is drawn parallel to one side of a triangle intersecting the other sides in distinct points, prove that it divides the other sides in the same ratio.

Use the above result to prove the following :

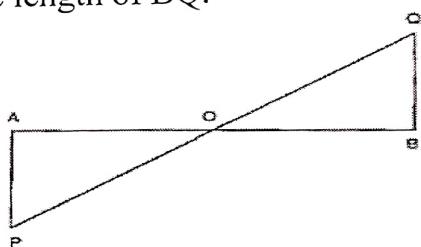
In the given figure, if $ML \parallel BC$ and $NL \parallel DC$, then prove that $AM/MB = AN/ND$.

errors - eraser

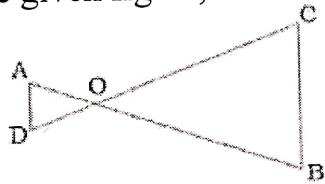

7. A line l intersects sides PQ and PR of triangle PQR at L and M respectively such that $LM \parallel QR$. If $PQ = 12$ cm, $PR = 10$ cm and $PL = 7.2$ cm, then find the length of PM.

8. ABCD is a trapezium with $AB \parallel DC$ and the diagonals intersect each other at the point O. Show that $AO/BO = CO/DO$.

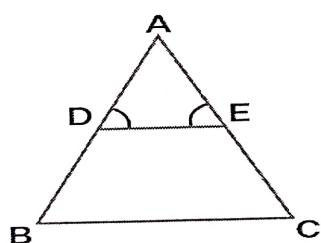
errors - eraser


9. D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$. Show that $AC^2 = DC \cdot BC$

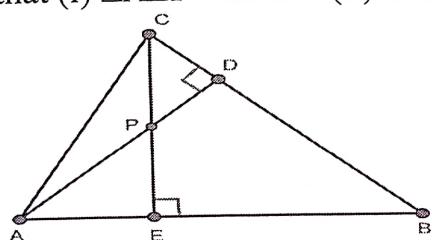
10. In given figure sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle ABC \sim \triangle PQR$.


errors - eraser

11. In the given figure, $AP \perp AB$ and $BQ \perp AB$. If $OA = 15 \text{ cm}$, $BO = 12 \text{ cm}$ and $AP = 10 \text{ cm}$, find the length of BQ .

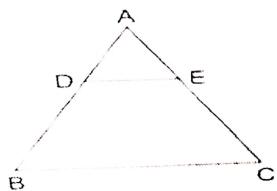

errors - eraser

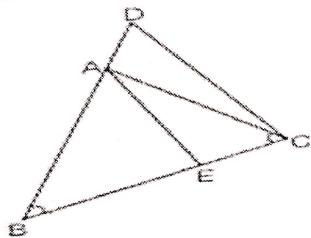
12. In the given figure, $OA \times OB = OC \times OD$. Prove that $\triangle AOD \sim \triangle COB$.


errors - eraser

13. In the given figure, $\angle D = \angle E$ and $AD/DB = AE/EC$. Prove that $\triangle ABC$ is an isosceles triangle.

errors - eraser


14. In the given figure, altitudes CE and AD of $\triangle ABC$ intersect each other at the point P. Show that (i) $\triangle AEP \sim \triangle CDP$ (ii) $\triangle ABD \sim \triangle CBE$ (iii) $\triangle AEP \sim \triangle ADB$

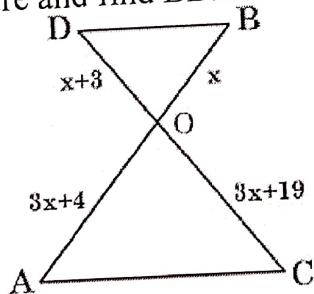

errors - eraser

15. AD and PM are medians of triangles ABC and PQR, respectively where $\triangle ABC \sim \triangle PQR$. Prove that $AB/PQ = AD/PM$.

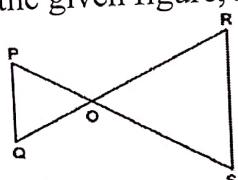
16. If in the given figure, $DE \parallel BC$. If $AD = 2.8 \text{ cm}$, $DB = 2.1 \text{ cm}$ and $EC = 4.8 \text{ cm}$, then the value of AE is : (error-eraser)

17. In the given figure, $\angle ABC = \angle ACB$ and $BC/BE = BD/AC$. Show that $\triangle ABE \sim \triangle DBC$ and $AE \parallel DC$. (error-eraser)

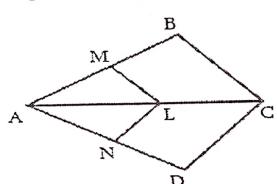
18. In the figure given below, a folding table is shown :


The legs of the table are represented by line segments AB and CD intersecting at O . Join AC and BD . Considering table top is parallel to the ground, and $OB = x$, $OD = x + 3$, $OC = 3x + 19$ and $OA = 3x + 4$, answer the following questions : (error-eraser)

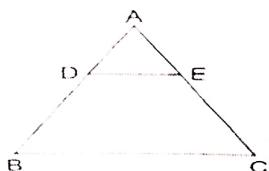
(i) Prove that $\triangle OAC$ is similar to $\triangle OBD$.


(ii) Prove that $OA/AC = OB/BD$

(iii) (a) Observe the figure and find the value of x . Hence, find the length of OC . OR


(iii) (b) Observe the figure and find BD/AC .

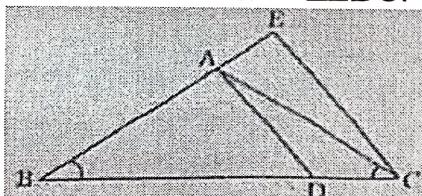
19. In the given figure, $PQ \parallel RS$. Prove that $OP * OR = OQ * OS$. (error-eraser)


20. In the given figure, $LM \parallel CB$ and $LN \parallel CD$. Prove that $AB/AD = AM/AN$ (error-eraser)

21. CD and GH are respectively the bisectors of $\angle ACB$ and $\angle EGF$ such that D and H lie on sides AB and FE of $\triangle ABC$ and $\triangle FEG$ respectively. If $\triangle ABC \sim \triangle FEG$, show that : (i) $CD/GH = AC/FG$ (ii) $\triangle DCB \sim \triangle HGE$ (iii) $\triangle DCA \sim \triangle HGF$

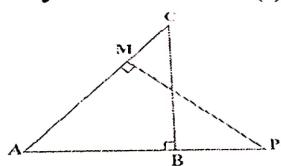
22. It is given that $\triangle ABC \sim \triangle DEF$. If $\angle A = 55^\circ$, $\angle E = 45^\circ$, then $\angle C$ is :

23. In the given figure, in $\triangle ABC$, $DE \parallel BC$. If $AD = 2x$ cm, $AE = (x + 2)$ cm, $DB = 4$ cm, $EC = 3$ cm, then the value of x is :


24. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then the other two sides are divided in the same ratio.

errors - eraser

25. In $\triangle ABC$, $DE \parallel BC$. If $AD : DB = 2 : 3$, then $DE : BC$ is equal to :

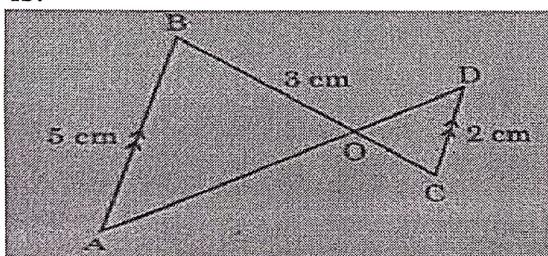

26. In the given figure, $BD/BC = AC/BE$ and $\angle ABD = \angle ACD$.

Show that $\triangle ABD \sim \triangle EBC$.

27. In the given figure, $\triangle ABC$ and $\triangle AMP$ are two right triangles, right angled at B and M respectively. Prove that : (i) $\triangle ABC$ is similar to $\triangle AMP$ (ii) $AB \cdot AP = AC \cdot AM$

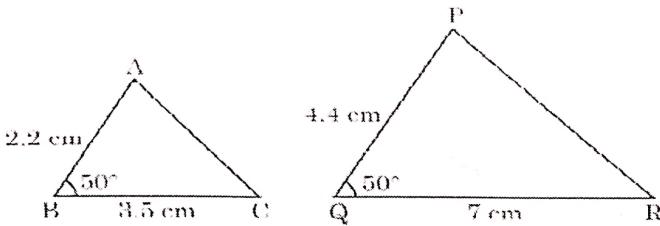
errors - eraser

28. If in two triangles $\triangle ABC$ and $\triangle PQR$, $QR/AB = PR/BC = PQ/CA$, then :


29. The line segments joining the mid-points of the adjacent sides of a quadrilateral form a :

errors - eraser

30. The sides of 2 similar triangles are in ratio 4:7. The ratio of the perimeters is

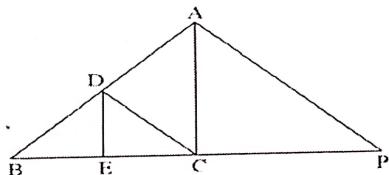

31. In the given figure, $AB \parallel CD$. If $AB = 5$ cm, $CD = 2$ cm and $OB = 3$ cm, then the length of OC is:

errors - eraser

32. In the above figure, the criterion of similarity by which $\triangle ABC \sim \triangle PQR$ is : (a) SSA (Side - Side - Angle) Similarity (b) ASA (Angle - Side - Angle) Similarity (c) SAS (Side - Angle - Side) Similarity (d) AA (Angle - Angle) Similarity

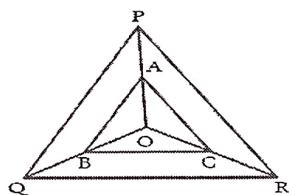
errors - eraser

33. In the given figure, $DE \parallel AC$ and $DF \parallel AE$. Prove that $FE/BF = EC/BE$.

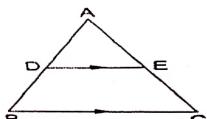


34. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $BO/AO = DO/CO$. Show that ABCD is a trapezium. (errors-eraser)

35. The diagonal BD of a quadrilateral ABCD bisects $\angle B$ and $\angle D$. Show that $AB/BC = AD/CD$.


36. S and T are points on sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPS$ is similar to $\triangle RTS$. (errors-eraser)

37. In the given figure, $DE \parallel AC$ and $BE/EC = BC/CP$. Prove that $DC \parallel AP$.

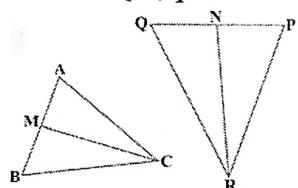

38. If $\triangle ABC \sim \triangle DEF$ and $\angle A = 47^\circ$, $\angle E = 83^\circ$, then $\angle C$ is equal :

39. In the adjoining figure, A, B and C are points on OP, OQ and OR respectively such that $AB \parallel PQ$ and $AC \parallel PR$. Show that $BC \parallel QR$. (errors-eraser)

40. $\triangle ABC$ and $\triangle DEF$ are similar, their perimeter are 32 and 24 respectively, find DE if $AB = 10$ cm (errors-eraser)

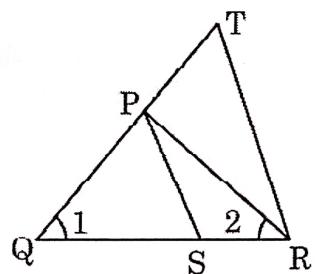
41. In the given figure, $AD = 2$ cm, $DB = 3$ cm, $DE = 2.5$ cm and $DE \parallel BC$.

The value of BC is :


42. In two triangles PQR and ABC, it is given that $\frac{PR}{PQ} = \frac{BC}{AB}$. For these two triangles to be similar, which of the following should be true?

(a) $\angle A = \angle P$ (b) $\angle B = \angle Q$ (c) $\angle B = \angle P$ (d) $CA = QR$

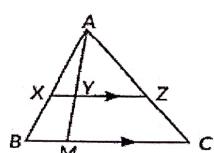
43. Prove that congruent triangles are also similar but not the converse. OR What more is least needed for two similar triangles to be congruent?


44. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that $\triangle ABE \sim \triangle CFB$.

45. In Figure, CM and RN are respectively the medians of $\triangle ABC$ and $\triangle PQR$. If $\triangle ABC \sim \triangle PQR$, prove that: $\triangle AMC \sim \triangle PNR$

46. In the given figure, $QR/QS = QT/PR$ and $\angle 1 = \angle 2$. Show that $\triangle PQS \sim \triangle TQR$.

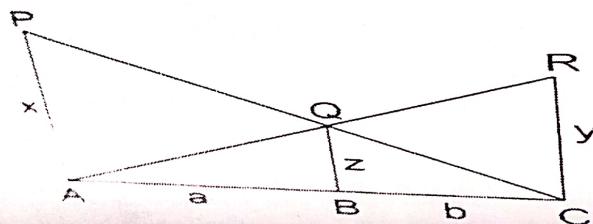
(errors-eraser)

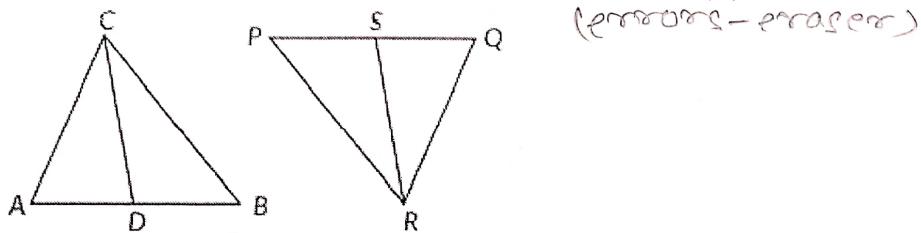

47. The perimeters of two similar triangles are 28 cm and 35 cm respectively. If one side of the first triangle is 8 cm, then the corresponding side of the second triangle is:

(errors-eraser)

48. If in triangles ABC and PQR, $B = Q$, $R = C$ and $AB = 2PQ$, then the two triangles are:

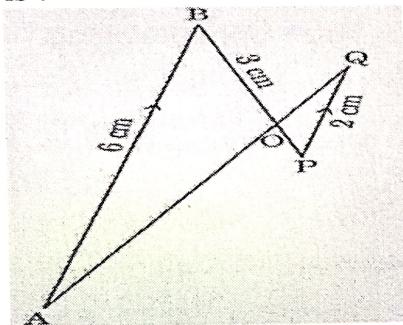
49. In the given figure, XZ is parallel to BC. Given: $AZ = 3$ cm, $ZC = 2$ cm, $BM = 3$ cm, and $MC = 5$ cm. Find the length of XY.


(errors-eraser)

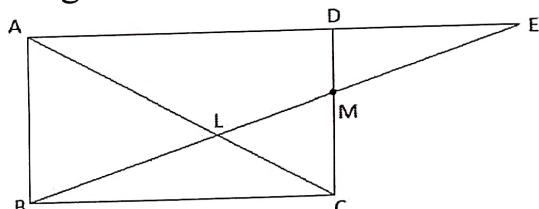

50. PA, QB, and RC are each perpendicular to AC. Given $AP = x$, $QB = z$, $RC = y$, $AB = a$, and $BC = b$. Prove that:

(errors-eraser)

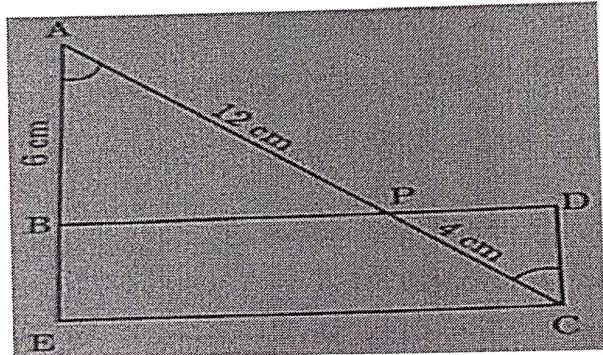
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$$



51. In the given figure, CD and RS are respectively the medians of $\triangle ABC$ and $\triangle PQR$. If $\triangle ABC \sim \triangle PQR$ then prove that: (i) $\triangle ADC \sim \triangle PSR$ (ii) $AD \times PR = AC \times PS$


52. If $\triangle ABC$ is similar to $\triangle PQR$ with $A = 32$ and $R = 65$, then the measure of B is :

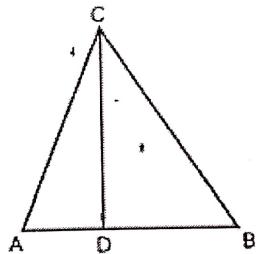
53. In the given figure, $AB \parallel PQ$. If $AB = 6$ cm, $PQ = 2$ cm and $OB = 3$ cm, then the length of OP is : (errors-eraser)



54. Sides AB and BC and median AD of a $\triangle ABC$ are respectively proportional to sides PQ and QR and median PM of $\triangle PQR$. Show that $\triangle ABC$ is similar to $\triangle PQR$. (errors-eraser)

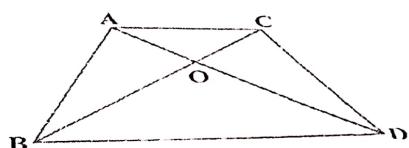
55. Through the mid-point M of the side CD of a parallelogram $ABCD$, the line BM is drawn intersecting AC in L and AD (produced) in E . Prove that $EL = 2BL$. (errors-eraser)

56. In the given figure, $\angle A = \angle C$, $AB = 6$ cm, $AP = 12$ cm, $CP = 4$ cm. Then length of CD is :

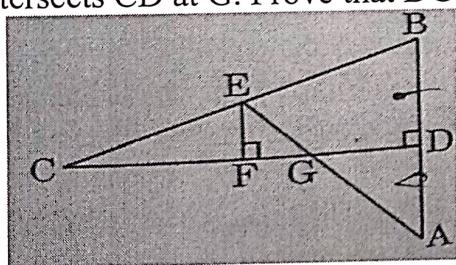

57. In $\triangle ABC$, $PQ \parallel BC$. If $PB = 6$ cm, $AP = 4$ cm, $AQ = 8$ cm, find the length of AC .

(errors-eraser)

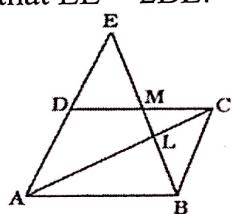
58. D is a point on the side BC of a triangle ABC such that $\angle ADC = \angle BAC$, prove that $CA^2 = CB \cdot CD$


59. If AD and PM are medians of triangles ABC and PQR, respectively where $ABC \sim PQR$, prove that $AB/PQ = AD/PM$. *(errors - eraser)*

60. In the given figure, $\angle ADC = \angle BCA$; prove that $\triangle ACB \sim \triangle ADC$. Hence find BD if $AC = 8 \text{ cm}$ and $AD = 3 \text{ cm}$. *(errors - eraser)*

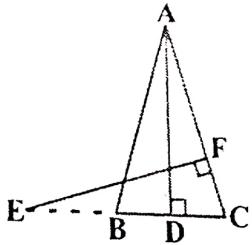


61. In a PQR , N is a point on PR , such that $QN \perp PR$. If $PN \times NR = QN^2$, prove that $\angle PQR = 90^\circ$.


62. In the given figure, ABC and DBC are on the same base BC. If AD intersects BC at O, prove that $\text{ar}(\triangle ABC) / \text{ar}(\triangle DBC) = AO/DO$ *(errors - eraser)*

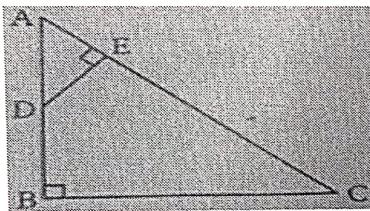
63. In the given figure, CD is the perpendicular bisector of AB. EF is perpendicular to CD. AE intersects CD at G. Prove that $DG/FG = CD/CF$ *(errors - eraser)*

64. In the given figure, ABCD is a parallelogram. BE bisects CD at M and intersects AC at L. Prove that $EL = 2BL$. *(errors - eraser)*



65. If $\triangle PQR \sim \triangle ABC$; $PQ = 6 \text{ cm}$, $AB = 8 \text{ cm}$ and the perimeter of $\triangle ABC$ is 36 cm , then the perimeter of $\triangle PQR$ is

66. ABC is a triangle in which $DE \parallel BC$. If $AD = x$, $DB = x-2$, $AE = x+2$ and $EC = x-1$, then find the value of x. *(errors - eraser)*


67. Diagonals AC and BD of trapezium ABCD with $AB \parallel DC$ intersect each other at point O. Show that $OC/OA = OD/OB$.

68. In given figure E is a point on side CB produced of an isosceles triangle ABC with $AB = AC$. If $AD \perp BC$ and $EF \perp AC$, prove that $\triangle ABD \sim \triangle ECF$.
(errors - eraser)

69. In a $\triangle ABC$, $\angle A = x$, $\angle B = (3x-2)$ and $\angle C = y$. Also, $\angle C - \angle B = 9$. Determine the three angles of the triangle.
(errors - eraser)

70. In the given figure, AB is perpendicular to BC and DE is perpendicular to AC. Prove that $\triangle ABC$ is similar to $\triangle AED$.

71. The perimeters of two similar triangles are 42 cm and 35 cm respectively. If one side of the first triangle is 12 cm, then the corresponding side of the second triangle is :
(errors - eraser)

72. E and F are points on the sides PQ and PR respectively of a $\triangle PQR$. If $EF \parallel QR$ and $PE = 4$ cm, $QE = 3$ cm and $EF = 4$ cm, then the length of QR is :

73. Prove that each of the four triangles formed by joining the mid-points of the sides of a triangle are similar to the original triangle.
(errors - eraser)